Rapid dephosphorylation of the TorR response regulator by the TorS unorthodox sensor in Escherichia coli.
نویسندگان
چکیده
Induction of the torCAD operon, encoding the trimethylamine N-oxide (TMAO) respiratory system, is tightly controlled by the TorS-TorR phosphorelay system in response to TMAO availability. TorS is an unorthodox sensor that contains three phosphorylation sites and transphosphorylates TorR via a four-step phosphorelay, His443-->Asp723-->His850-->Asp(TorR). In this study, we provide genetic evidence that TorS can dephosphorylate phospho-TorR when TMAO is removed. Dephosphorylation probably occurs by a reverse phosphorelay, Asp(TorR)-->His850-->Asp723, since His850 and Asp723 are both essential in this process. By using reverse transcriptase PCR, we also show that TMAO removal results in shutoff of tor operon transcription in less than 2 min. Based on our results and on analogy to other phosphorelay signal transduction systems, we propose that reverse phosphotransfer could be a rapid and efficient mechanism to inactivate response regulators.
منابع مشابه
TorI, a response regulator inhibitor of phage origin in Escherichia coli.
The torI gene has been identified by using a genetic multicopy approach as a negative regulator of the torCAD operon that encodes the trimethylamine N-oxide reductase respiratory system in Escherichia coli. The negative effect was due to a previously unidentified small ORF (66 aa) of phage origin that we called torI for Tor inhibition. Overexpression of torI led to an 8-fold decrease of the tor...
متن کاملThe TorR high-affinity binding site plays a key role in both torR autoregulation and torCAD operon expression in Escherichia coli.
In the presence of trimethylamine N-oxide (TMAO), the TorS-TorR two-component regulatory system induces the torCAD operon, which encodes the TMAO respiratory system of Escherichia coli. The sensor protein TorS detects TMAO and transphosphorylates the response regulator TorR which, in turn, activates transcription of torCAD. The torR gene and the torCAD operon are divergently transcribed, and th...
متن کاملAnticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli.
The torCAD operon encoding the TMAO reductase respiratory system is induced in the presence of TMAO by the two-component regulatory system TorS/TorR. The TorS sensor detects TMAO and transphosphorylates the TorR response regulator via a four-step phosphorelay. Once phosphorylated, TorR activates expression of the torCAD structural operon. In order to identify new genes regulated by the Tor regu...
متن کاملThe Sensory Histidine Kinases TorS and EvgS Tend to Form Clusters in Escherichia coli Cells
Microorganisms use multiple two-component sensory systems to detect changes in their environment and elicit physiological responses. Despite their wide spread and importance, the intracellular organization of two-component sensory proteins in bacteria remains little investigated. A notable exception is the well-studied clustering of the chemoreceptor-kinase complexes that mediate chemotaxis beh...
متن کاملAn unsuspected autoregulatory pathway involving apocytochrome TorC and sensor TorS in Escherichia coli.
Trimethylamine N-oxide (TMAO) respiration is carried out mainly by the Tor system in Escherichia coli. This system is encoded by the torCAD operon and comprises a periplasmic TMAO reductase (TorA) and a c-type cytochrome (TorC), which shuttles electrons to TorA. Expression of the tor operon is positively controlled by the TorS/TorR phosphorelay system in response to TMAO availability and negati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 8 شماره
صفحات -
تاریخ انتشار 2001